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Al)str-net

This paper presents an on-line method for computing themotion of atobot in adynamicenvironmery,
subject 1o 1the robot dynamics and s actuator constraints. This metbod is based 011 ilic conceptof
Velocity Obstacle that defines the set of robot velocities that wouldresult in a collision between the
rob ot and an obstacle moving al a given velocity.  The avoldance mancuver at a specific time is thus
computed by sclecting robot’s velocities out of that set. The sel of all avoiding velocities is reduced to
the dynamically feasible mancuvers by considering therobot “s acceleration €onsirainis. This computation
is repeated at regular time intervals 1o account for general obstacle trajectories.

The trajectory consists of a sequence of avoidance M ancuvers that are computed al discrete time
intervals using the concept of Velocity Obstacle. i.c. sclecting those velocit ics that avoid future collisions
and satisfy the dynamic constrainis, The trajectory from siart to goal is then composed by searching the
tree of the avoi dancemancuvers. A n exhaustive scarch of thetree yiclds near-optimaltirajectories that
cither minimize distance or motion time. For on-time applications, a heuristic scare]] of thetreethat
scleets one avoidance mancuver at cach time i erval is proposed Lo satisfy a prioritized list. Of objcctives,
such as rcaching 1he goal or maximizing speed.

A dynamic oplimizalion is used to verify the quality of ihetrajectory computed by the heurisiic
scarchi. 1t uses thetrajectory as its initial guess, climinates the cffects of the time discretizati on, and
minimizes motion time, subject to the dynamics of therobot.its actuator himitsandihe state inequality
constraintsductothemovingobstacles. This stepestablishesa criterion for evaluating the performance
of ol)-line planning methods for dynamic environments.

This approach is demonstrated for planning the trajectory of anautomated vehicle in an Intelligent
Vehicle Highway Sysicm scenario.

1. Introduction

This Paper addresses the problem of motion planning in dynamic environments. Typical examples
of dynamicen vironm e nis include manufacturing tasks in whi chi robot. anipulators track and retricve
parls frommoving conveyers. andair. sca.andlandtraflic. where aircrafi. vessels and vehicles avoid cach
other while moving towardsiheir destillsi.ion.

Molion planning in dynamic cnvironments is considerably more diflicult than the widely studied
static problem, since it requires the simultancous solution of thepath planning and of the velocity
planning problems. Patl planuing involves the computation of a collision free patl from start 1o goal
without considering robot. dynamics. Velocity planning. on the of her hand. involves the computation of
the velocity profile along a given path, satisfying system dynamics and actuator constraints. In addition.
motion planning in static environments can be guaranteed Lo find a solution if one exists al 1ime 4.
whereas mnotion planning in dynamic environments is essentially intractable. [36]. [9]. i.e. ihe solution at
Lo may not exist al a later time because of ihie evolution of the environent.

Previous methods consisted of a graphscarch in a position- time configuration space of therobot
(12.1 31, andchecking for intersection of the swept volumes of theroboland obstacles in a Carlesian-time
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space [5- 8]. Velocity const raints were considered in [35] for the solution of the asteroid problem, and
acceler gtjon €onst rains were satisfied in [1 0] andin [33] for planning for apoint mass.

Approximate dynamic constraints were satisfied in [23.24] by decomposing the planning problem
into path and velocity planning, and by hmiting slope, div ecetion and curvature of 1he trajectory in a
position-time planc. Dynanic constrainis were used in [1 9.20[10 define the collision front.and in [1 7.18§]
1o introduce the concept of transient obstacles, also applicable 1o dynamic environiments.

To datc. on-line dynamic planning has been treated by emphasizing 1 casoning and decision making
[36], or by creating artificial potential fields around the obstacles [2 ).

The time-oplimal motion planning problem in static environments has been treated previously using
paramcter oplimizations, representing the trajectory as a polynomial in time and accounting for obstacles
using a penalty funclion [22]. and representing the path by a cubic spline {38]. [1]. computing the motion
time along the path with an efficient method developed in[1] and in [39]. Tiine optimal iotion planning
of cooperating robots moving along specified paths has been studied in [27]. [39).

In this paper, we develop an cflicient method for computing the trajectories of a robol moving in a
time-varying environment. 1. utilizes the concept of Velocity Obstacle (VO). which represents the robol.’s
velocitics that would causc a collision with an obstacle at some ful ure time. A1y avoidance mancuver is
computed by sclecting velocities that are outside of the velocity obst acle. 1o ensure thai the maucuver is
dynami cally feasible. robot dynamics and actuator constraints are mapped int o the robot velocity space.
A irajectory consists of a sequence of suchavoidance mancuvers. computed by scarching over atree of
avoidance mancuvers generated at discret e time intervals. For on-linc applications, the tree is pruned
using a heuristic scarch designed 10 achicve a prioritized et o f objectives, sucl1 as avoiding collisions.
reaching the goal, maximizing speed, or computing trajectories with desirable topology.

The solutions computed with this method are conser vaiive. since i hey exclude trajeclories that.,
alihough feasible. include avoidal ice mancuvers Vi olating the velocity obstacle. To evaluate thequakity of
these trajeclories, they are compared to the trajectories €01 nputed using a dynamic optimization, which
arc not. bound by the velocily obstacle approach. The optimizationused here is a steepest descent [3].
[1 1]. modified to include the state-depenident inequality consiraints due o the moving obstacles. The
initial guess of the opti mization is the trajectory generated by the search over the mancuver tree.

The advantages of this approach are mulli-fold: ) it. permits an eflicient geometric representation
of potential avoidance maneuvers of the moving obst acles, #4) any number of moving obst a cles can be
avoided by consideri ng the umon of their VO's. 444) it unifies the avoidamnce of moving as well as st at jonary
obstacles, and 7v) it allows for’ the simple consideration of 10bot dynamics and actuator constrain s,

This paper is organized as follows. Section 2 defines the Velocity Obstacle. the avoidance velocities.
and describes the representation used to compute the trajectories. Scetion 3 describes the dynamic
oplimization used 1o compute the time optimal irajector its. Ixamples of trajectorics, and of their
corresponding {ime optimal solutions are presented in Seciion 4.

2. The Velocity Obstacle

The Velocity Obst acle (VO) is an extension of the Configuration Space Obstacle [30] to a time-
varying environment. It consisis of the velocities of therobot that will cause acollision between therobot
and th ¢ obst gcles at som C future tim e, Although this con cept is valid for general robot s and obstacl es.
in thisPayper we restrict our analysis 1o circular robots and obstacles in the planc.

In1ihis section we first. define the VO concept and then we combine it with the dynamic constrainis
of 1ihe robot o compute avoidance velocities that are also dynamically fecasible.  The corresponding
avoidance mancuvers are used 1o build a tree that represer i s, with in the given temporal resolution. all
ilic avoidance trajectorics geheratedio satisfy the constrainis represented by t he velocity obstacles.

2.1. Definition of Velocity Obst acle

The VO is illustrated using the scenario shown in Figure 1, where two civcular objects, A and By,
arc shown at 1ime i with velocities v4 and vg,. Circle A 1epresents the 1obol, and circle By represenis
the obstacle. The velocities and positions of A and By were chosen so thal A and B; will collide at some
time 14, {#; > o). provided that v 4 and vy, do not change.
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Figure 1: The robot and a moving obstacle. Figure 2: The Collision Cone CC 4 g, .

_ To computethe VO, we first represent By in the Configuration Space of A by reducing A to the point
A, and enlarging By by the radius of A to the circle B [29]. and then we attach the velocity vectors to
the position of A and to the center of ]/?\], respeclively.

By considering the relative velocity va, g, = v4 — v, and by assuming that 4 and By maintain
their current velocities, a collision between Xilil(] E will occur at some future time #; > g if 1the line
Aa.p, of the relative velocity v 4 p, intersects By, In fact. any relative velocity that Hes between the two
tangents 1o 1/3\1 Ay and A, will cause a collision between A and By, Therefore, we define the Collision

Cone, CC4 p,. as the scl of colliding relative velocities between Aand By on
C’C'A‘B; = {VA‘BI ‘ "‘A‘Bn N H; :;{ (0} (])

This cone is the planar sector with apex in A, bounded by the two tangents Ay and A, from Ao ]/1\] as
shown in Figure 2.

The collision cone thus partitions the space of relative velocities into colliding and avoiding velocities.
The relative velocities, v 4 g, . lying on the boundaries of CC 4 g, represent tangent mancuvers that would
graze the obslacle B.

The collision conc is specific 1o a particular pair of robot fobstacle. To consider multiple obstacles.
it is useful 1o establish an cquivalent partition of the absoluie velocitics of A, This is done simply by
adding the velocity of By, vp,, 1o cach velocity in CC4 g, or, cquivalently, by translating the collision
cone CCy p, by vp,. as shown in Figure 3 [15]. The Velocity Obstacle VO is then defined as:

VO = CCapn OV, (2)

where @ is the Minkowski vector sum operator.

Thus, the VO partitions 1lhic absolulce velocitics of A into avoiding and colliding velocitics. Velocitics
on the boundaries of VO would result in A grazing B;. since the corresponding relative velocities lic on
the boundary of the collision cone CCy4 g,. Note that 1hie VO of a stationary obstacle is identical to its
relative velocity cone, since then v, = 0.

To avoid mulliple obstacles, the VO’s of cach obstacle are combined into a single velocity obstacle:

VO = U, Vo, (3)

where m is the number of obstacles. The VO assumes that the velocity of By remains constant. To
account for variable velocities, VO is recompuied at specified time intervals.

The assumption of circular robot and obstacles reduces the dimension of the configuration space,
and 1hus greatly simplifies the computation of the VO. Tt also fixes the shape of ilie configuration
spacce obstacles, which arce gencrally functions of their positions in the robot’s work space. For gencral
manipulators, the VO must be periodically recomputed 1o account for the 1ime varying configuration
space obstacles [13].




Figure 3: The velocity obstacle VO. Figure 4: The reachable avoidance velocities.

2.2. The Avoidance Maneuvers

The velocities reachable by robot A at a given state over a given time interval Af are compuied by
iransforming the dynamic constrainis of the robot into bounds on its acceleration. The sel of  feasible
accelerations at time to. F A (1).1s defined as;

FA(ly) = (x |%=f(x.%.u),ueU} (4)

where f(x,%.u)representsthedynamics of therobotl. u are theactuatorcefforts. U is the set of admissible
controls, and x is the posilion vector defined carlier. Note that the feasible accelerationrange of a two
degrec-of-free dom system with decoupled actuator imits is a parall clogram [37].

The sct. of reachable velocitics. RV (1g 4 At), over thetimeinterval Af is thus defined as:

RV{E+AL) =(v [v = va(ta) DAL-FA(16)} (5)

The sct of reachable avoidance velocities. R AV, is defi ned as the diflerence b etween the reachable
velocities andihe velocity obstacle:

RAV(to+ At) = RV (1o -1 1) 0 VO(1a) (6)

where O denotes the operatiol) of set difference. A mancuver avoiding obst acle By is thus computed by
sclecling any velocity in RAV. Figure 4 shows schematically the reachable velocity set. RAV consisiing
of two disjoint closed sets. Sy and S,.. For multiple obstacles, the RAV may consist. of multiple disjoint.
subsels.

2.3. Computing the avoidance trajectories

The trajectory that avoids static and moving obstacles, reaches thegoal, and satisfies the robot’s
dynamic constraints is computed as a discret ¢ sequence of clem entary avoidance mancuvers, sclect ed
by a global scarch over the tree of all fecasible mnancuvers at specified time intervals. Allernatively, the
global scarch may be reduced to a heuristic scarch for on-line applications, where the trajectories of the
moving obstacles are hoi. know na- priori, but are rath er acquired in real-time. These two approaches are
discussed next.

2.3.1. GlobalSearch

We represent the state space Of therobotl by airee Of avoidance mancuvers at diserete time intervals.
The nodes on this tree correspond 1o the positions O f  the robot at discrete times ti. The operators
¢ xpanding a node al time #; into its SO ccessors al tim e tyyy = L+ T are 1l velocities i1l the reachable
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Tigure 5: Representation for global scarch. Figure 6: a: TG strategy. b: MV sirategy.

avoidance velocity sct RAV. The edges correspond 1o the avoidance mancuvers at those positions [34.32].
Thescarchtree is thendefined as follows:

noo={xiy = (@), v (0): ve; = (vja (1) vy (1))} @)
o 31 = A{vi|vi €RAV;{1:)} (8)
ci = {(ni‘j, Niyq ) |7"‘H 1,0 = Mg+ (("[‘j,l Af]} (9)

where n:5 if the jih node at time ;. RAV;(1;) is the reachi ble velocity set computed for node i - 0ii
is the lth operator on node j at time ;. and ¢ 1 is the edge b etween node 7 at time % and node ng at,
time ;41

The tree of all feasible avoidance mancuvers is constructed as follows. At time #;. the avoidance set.
RAV. corresponding 1o node n; ;. is discretized by a grid. Then. the veloci ies corresponding to cach node
on ihe grid arc usedtocomputce the edges emanating from node n;The positions reached by the robot
at th e end Of cachmancuverarethesuccessors of noden; ;. A node % is completely expanded when
all the operators o; ;. have been applied and all the edges emanating from 72 j have been examined. The
resulling iree has a constant 1ime interval between nodes. a variable branch number that is a function
of theshape of cach RAV. andit can be scarched using st andard techniques [34.32]. Figureb snows
schem at ically a sublrec of some avoidance man cuvers.

Since the avoidance mancuvers are scl ected bésed on the velocity obstacles VO. 1hey are D ever on a
collision course with any of the considered obstacles. as disc ussed earlier. This excludesirajectories Ils
might, part of thetime. be on a collision course withsome of the 0bst acles. However, such trajectories may
be generated by cither considering only obstacles with imminent collisions. or by refining the trajectory
using a dynamic optimization. as discussedlater in Scction 3.

2.3.2. Heuristic Search

For ol)-line applications, or when only incompleteinformationaboutthe environment is available. the
mancuver tree can be constructed incrementally using heuristic rules designed 1o Séisfy the prioritized
sct of gods embedded in the formulation of 1he velocity obstacle. The survival Of therobot canbe
guaranteed by sclecting the avoidance velocities B AV ; the target can be ¥ cached by selecting velocities
I.list point towards the destination; the motion time can be minimized by chioosing 1he highest. velocity
available; and the desired trajectory structure can be selecied by choosing an appropriate sequence of
front and rear avoidan cc manecuvers [1 4].

We thus propose the following basic heuristics: (@) TG (L0 goal). choose the highest avoidance velocity
along the line to the goal, as shown in Figure 6-a; () MV (maximumn velocity). select the maximum
avoid ance velocity within some specified angle e from ile li netotliegoal, as shown in Figure 6-b. Other
heuristies may combine the above strategies in order Lo betier satisfy the prioritized goals.




3. TheDynamic Optimization

The 1irajectory computed by the heuristic scarch is evaluated of-line by a dynamic optimization.
This optimization is formul aied using Mayer notation for the performanceindex .1:

min J . owith J = 1y = ¢(x(1y).17) (lo)
u)eU

subject to th e following kinematic and dynamic Const yaints:

(1) T'(x(ta).1a) == 0 (2) Qx(ty).ty5) = O (3) ﬂ':Ul[Sv;(x(t).f.) = 0] (11)
(4) x = Y-(X11) = f(x) -t g(x)u (5 U = {u|wu{min) <u; < ug(mar)} (12)

where (1) is the initial manifold. (2) is the bermin a} manifold, (3) represelig fhe time-varying obstacles.
(4) is therobot dynamics, and (5) represents the admissible controls.

State constraints duciothe presence Of obstacles (11 -3) are differentiaged with respect Lo time until
they become explicit. in ihe controls . and then appended as state dependent control constraint 1o 1lie
ITamiltonian [4]. [11]. The number of differentiations of cach constraint represents the order p of thad
constraint. This approachrequires an additional tangency constraint d t he cudry point. of the constrained
arc [40]. Thismay over-cmisirain the problem for constraitit g of order higher thantwo [21].

For’ cxample, inthe case of asingle obstacle, thestate constraint (113) is replacedbyilictangency
condition. denoted ¥y, and the control cquality constraint. denoted ¥o:

S(x(1).1) = 0
S(x(1).1)=o \
¥y - _ t=ty . Wy SWx(1).u(t). f), 0 13 <1< (13)

SE=D(x(1).1) = 0
Then. the admissible control set. 2 for the optimal control ¢ (1) becomes:

U Ugin () €0 S, (X)

SP (x(1). w(t). 1) = O forS(x.1)=0 o

U
{

3.1. The Necessary Optimality Conditions

The optimal control u* (1) in the interval £ <1 < 1. that peneral es the optimal soluiion. x* (1),
minimizes .J, and salisfies the fixed terminal manifolds r and Q, is comnputed by satisfying the necessary
conditions of Pent.ryagin Minimum Principle[4]. [2]. [28].

The Hamiltonian function M for thisProblem is defined as [4] [28):

H(A. x.u) = AT(£(x) + g(x)u) -t xTo(x.u) (15)

where A and st arcvectors of Lagrange multipliers. andp(x, u) is 1 heset of active control constrainisal
time 1, 1o <1 <15
The adjoint. equations for the Lagrange multipliers arc given by:

, oH\" ’ e R ¢)
Ao (2 prpy = (224,000 16
(0x> (1) ox T O/, (16)
which exhibit the discontinuity ai tlie entry point of the constraint given by [11]:
: U\
AT = AT 4TS 17
il f? —’ I (r)l(f]) ( )

When the constraint (13) is aciive. 1he minimization of the Hamiltonian for an antonomous syst em
is equivalent Lo satisfying:

My (A(E).x"(1).u (1)) = 0t <1<y (18)




and the adjoint equations for the constrained arcs become:

Ao pm 2000 den (%(x,u))*’ fm(x-,u)] s)

ox ox Ju Ox

in summary, ihetrajectory minimizing the performance index J =ty is characterized by the fol-
lowing: (i) its controls u* arc in the admissible set U. (i) the states satisfy the terminal manifolds I’
at toand Q at by, (i) the co-state ecquations are described by (1 6) onthe free arcs and by (19) on the
constrained arcs, with a discontinuity at the junetion of theiwo given by (1 7). and (#v) the Hamiltonian
is minimized over the entire inlerval. These conditions are satisfied by the trajectory computed by the
numerical method described nexi [1 4].

3.2. Numerical Comput ation

The optimal trajeclory is compuled numerically by appending the constraints to the performance
index J via appropriate art-ays of Lagran ge mullipliers, and by computing the corrections tothe controls
that drive 1o zero thie differential of 1the augment.ed performance ind ex .7 {1 4]. This differential is 11ien
derived as function of 1he variations in the control switches, assuming a ban p-bang solution [4 1], Singular
arcs on the solution arce then approximated by a finite nuinber of switches generating a quasi-optimal
solution [31].

The differential of 1the augmented performance index is formed by computing the differentials of J.
Q and ¥y independently, then including the effcets of ¥y on dJ and d§. andfinally combining all int. o
dJ. Thefinal form of the augmented performance index is:

~ (0 ) i
4] = (‘(,)—‘54 7‘Q 4 H) dig+ / Mobudr + / M, Suds (20)
, 1 Jid

i

whiere the Hamiltonian is given by % = ATF + g asin cquation (1 H); the Lagrange muliiplier A is
defined as AT = AL+ pTAL + TAT . since the constraints ¥y are nof aflected by the state aft er 2y 1 and
7. and v arc two ('0“ stant Lagrange multipliers.

Bang-bang controls can only assume onc of iwo vidues s 01°0,,, andihe viuiationinuis rewritien
as du; = (opr - @y, ) $g0(d1;), where sgn is the signum function.

If 84, indicatesihenumber of switchiesinthe s segment of the trajectory for thie rihinput, and m
indical es the number of clements in u.ihen dJ for bang-baug contrals b cc omes:

mo S mo Rz

Z 2(7{7;, )f,j(S’U..“(H.U + }: >:(H“,)1’J.(511 i(“'[_-,' (2] )
i1 j= 1 i=1 41

m Az ) 50
+ )Y (Hu, ), buidtiy + (-(—‘ﬁ 4 7(,)—, + H) diy

i=1 j=1 1y

This differential is minimized by choosing the steepest descent increments as [4]:

0(/: T o0
ot

(7(71,)t,j

di;; = —
4 widu;

dig ;——(7{+ (22)

with @ii and 1) being suitable positive vi ducs.

The values of digjand diy depend on mullipliers g and v, Their vilues are computed by requiring
that differentials d¥(¢; ) and d€2(2;) be reduced by given qua ntities ¢ and 0. The vidues for the muliipliers
1rand 77 are:

N = ]q, ((-} Tgav + ]‘]'4') (23)

-1

1 {dan”
v = = (ag+Ias’ 153 Tea 4 ' Taag +¥aa 4 = (T:W )
y
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Tigure 9: Solution with the T'G stralegy Figure 10: Solution with TG-MV strategics

4.1. The VO Trajectory

The trajectory sliown in Figure 8 is computed using the Depth First Herative Deepening algorithm
[26]. This algorithm returns the fastest path to 1 he target. the first time 111 caches the target. In the
example, the RAV scis have been discreiized by considering four points on cach side of the boundary,
andihie maximum feasible velocity in Hhicdirectiontothepoal. The scarch has been expanded 1o 4.5 s
and a depth of 5 levels . Thetotalmotiontime of i hissolution is of 3.5 s

Using the TG strategy resulted in the trajectory shown in Figure 9. Along 1his trajectory. the robot
slows down and let s vehicle 2 pass, and tlhien speeds up towards the exit, behind vehicle 1. The tol al
molion time for this trajectory is 6.07 S

The trajectory computed using both M V. and T'G st rategics is shown in Figure 10. Along {his
irajeclory. ile robot. first speedsupto pass vehicle 2, then slows down i o let vehicle 1 pass on. andthen
speecls up again towards the goal. The motion tiine for i his trajectory is 5.31 s. This trajeclory was
compuled by using the MV heuristics for 0 €1 < 2.0 s and the TG heuristics afterwards.

4.2. The Optimal Trajectory

Figure 11shows the initial guess of the optimization, obtained by int egr ating the bang-bang controls.
The cffects of approximating the trajectory of Figure 10 show in the diflerent terminal position of the
robot, far from theiarget,andinthe collision wii 11 vehicle 1. This collision is represented in Figure 11
by ihe black marks between time ¢ = 2.5s and time ¢ = 3.0s.  The marks represeni the depth of the
penctration of the robol into velicle 1.

This trajectory resembles the trajectory of Figure 10. namely thetype of mancuvers used in avoiding
ihe obstacles, and the time of the avoidance of vehicle two, at aPP roximately 1 = 2.5s. Then. using this
trajectory as the initial guess of the dynamic optimnization. the optinal solution satisfies the kinematic
and dynamic constraints of ihe problem.

The optimal solutionis shown in Figure 12. and it hasthe same key features of the heuristic trajectory
of Figure 10. thus allowing fora meaningful comparisonb etweenihe trajectory computed by the heuristic
search and the corresponding optimal solution. Themoliontime of the optimaltrajectory is 4.6 s. which
compares favorably with thie motion time of the heuristic solution of 5.31 s,

5. Conclusion

A novel method for planning  1lhic motion of arobot moving in & time-varying enviroument has been
presented. I is significantly different. from currently available planning algorithms, since it simultancously
compules the path and velocity profile I.list avoid all static and moving obstacles and satisfy the robot’s
dynamic const raint.s.

The method consists of compuling, for every obstacle, its corresponding velocity obstacle. which
is the sel of colliding velocities b etween the obstacle and 1 he robot. Then. by subtracting it. from the
reachable velocities of therobol. thicsel of reachable avoidance velocities is formed. which consisis of all
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Figure 11: Initial guess of the optimization. Figure 12: Optimalsolution.

the velocitics that avoid the obstacles and satisly the robot’s dynamic constraints. A scarch space is then
formed by representing the state space of therobot by a tree of @01 ance Mancuvers. A globalscarch over
the tree yiclds trajectories that minimize a sclected p erfornance index. suchasmotiontime or t.raveled
distance. The solutions computed with this method arc conservative. since cach mancuver avoids all
obstacles. irrespectively of their expected collision time, and they may exclude t rajectories that. although
feasible. violate the velocity obstacle in some inierval. For on-linc applications, the tree is pruncd using
on c of several heuristic 8t rategics, ai med at satisfying a porioritized list of goals, sucltas th e survival
of the robot, rcaching the t arget, and Mnim’yze mot jontime. The qualily of the heuristic trajectories
is evalu ated by comparing them to the optimal 1 raj cetories computed by dynamic optimization. The
method is demonstrated for planning the trajectory of an automated vehicle in an Intelligent Vehicle
Highway System scenario.

The inain advantages of the velocity obstacle approach include the eflicient geometric representation
of mancuvers avoiding any number of M oving and static obstacles. andthe siinple consideration of robot
dynamics and aclU ator constraints. This approach. therefore. mnakes it possible to Compute on-line safe
and feasible trajec tories for robot s in dynamic environme nis,
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